This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

REACTIONS OF THE HYDROLYZED PHOSPHAZENE N₃P₃(OCH₂CF₃)₅ ONa

S. Lanoux^a; R. H. Mas^a

^a Department of Chemistry, The University of Southwestern Louisiana, Lafayette, Louisiana

To cite this Article Lanoux, S. and Mas, R. H.(1986) 'REACTIONS OF THE HYDROLYZED PHOSPHAZENE $N_3P_3(OCH_2CF_3)_5$ ONa', Phosphorus, Sulfur, and Silicon and the Related Elements, 26: 2, 139 - 142

To link to this Article: DOI: 10.1080/03086648608083086 URL: http://dx.doi.org/10.1080/03086648608083086

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTIONS OF THE HYDROLYZED PHOSPHAZENE N₃P₃(OCH₂CF₃)₅ONa

S. LANOUX* and R. H. MAS

Department of Chemistry, The University of Southwestern Louisiana, Lafayette, Louisiana 70504-4370

(Received July 14, 1985; in final form August 16, 1985)

N₃P₃(OCH₂CF₃)₅ONa reacts readily with compounds which have an active chloride. Examples are p-toluenesulfonyl chloride, benzoyl chloride and triphenyldichlorophosphorane. The p-toluenesulfonate undergoes further reaction with sodium salts. These reactions describe a novel approach to the synthesis of new substituted phosphazenes.

Stable hydrolysis products of $N_3P_3(OCH_2CF_3)_6$ have been known for a number of years¹ but their reactions have not been investigated. This brief report shows that $N_3P_3(OCH_2CF_3)_5ONa$ (I) reacts with compounds which have active chloride to produce new substituted cyclotriphosphazenes.

RESULTS AND DISCUSSION

Reaction of I with sulfonyl chlorides produced reactive intermediates as the p-toluenesulfonate, II, p-nitrobenzenesulfonate, III, and the methanesulfonate, IV. Good crystalline material was obtained only after slow crystallization (weeks). If refluxing during synthesis was continued for an extended period N₃P₃(OCH₂CF₂)₅Cl was formed by a reaction of the NaCl by-product with the sulfonate. To illustrate the utility of sulfonated phosphazenes, II was allowed to react with NaOCH₂CF₃, NaOCOCH₃ and I to form N₃P₃(OCH₂CF₃)₆, VII and IX phosphazene products. Reaction of II with t-butyl lithium produced t-butyl alcohol and a phosphazadiene.

The products of reactions with organic acid chlorides produced a benzoate, V, a toluate, VI, and a terephthalate, X. It was hoped that these would be stable polymer model compounds; however, in the case of the terephthalate, decomposition began to produce phosphazadiene and precipitate acid as soon as the oily products were separated from mixtures. Reaction products of I with isophthaloyl and adipoyl chloride exhibited the same decomposition characteristics and were not characterized.

Table I gives analytical results yields and melting points for pure products. Table II gives IR, ¹H and ³¹P NMR spectra. The ³¹P NMR spectra for ring P atoms were sometimes AB₂ type and sometimes ABX type.

^{*}Author to whom all correspondence should be addressed.

Downloaded At: 08:16 30 January 2011

TABLEI

Elemental Analysis, Melting Points and Yields

	For N, P ₃ (CH ₂ CF ₃), R		Calc., %		1	Found, %	5 8		
Š	R	U	н	а	ပ	н	a.	M.P., °C & Yield	% Yield
Ш	OSO,C.H.CH»	25.46	2.12		25.63	2.21		43	9/
Ħ	OSO,C, H, NO,-9	23.09 1.70 1	1.70	11.16	22.9	1.51		8	75
≥.	OSO,CH,	18.22	1.81	12.81	18.39	2.05		36	
·	0C0C.H.	27.18	2.02	12.37	27.4	7 2.02	12.27	oil	75
N.	OCOC, H, CH,-9	28.25	2.24	12.14	28.3	2.41		oil	82
VII								oil	
VIII	ONA. DIĞLYME	23.92	3.02	11.57	23.98	23.98 3.04	11.63	94-6	83
Produc	Products of different formula								
ž×5	[N,P,(OCH,CF),5,120 [N,P,(OCH,CF),5,0],[COC,H,CO]							75 F	
7	というできた。							TO.	

TABLE II Spectroscopic Properties of Products

No.	IR ^a ,	cm - 1	¹ H NM	R ^f	31 P NMRb.e	
II.	PN OSO ₂	1244 s 1400 m	CH ₄ b,e	2.49 s	P(OCH ₂ CF ₃)(OSO ₂ —)	8.9 (d o t)
	0302	1400 III	OCH ₂ CF ₃	4.25 m 4.38 m	$P(OCH_2CF_3)$ $J_{PP} = 72.84$	17.1 (d o d)
			C ₆ H ₄	7.61 m	VPP	
III.	PN	1260 s	OCH ₂ CF ₃ c	4.31 m	$P(OCH_2CF_3)(OSO_2-)^c$	13.0 (d o t)
	OSO ₂	1400 m	C ₆ H ₄	8.25 m	$P(OCH_2CF_3)_2$	17.3 (d o d)
	NO_3	1560 s			$J_{\rm pp} = 60.80$	
IV.	PN	1260 s	CH ₃	3.26 s	$P(OCH_2CF_3)(OSO_2-)$	8.9 (d o t)
	SO ₂	1400 m	OCH ₂ CF ₃	4.31 m	$P(OCH_2CF_3)_2$ $J_{PP} = 63.76$	16.6 (d o d)
V.	PN	1240 s	OCH,CF,c	4.32 m	$P(OCH_2CF_3)(O_2C-)$	13.1 (d o t)
*.	111	1260 sh	C ₆ H ₅	7.75 m	$P(OCH_2CF_3)_2$	17.5 (d o d)
	CO	1760 s	C6115	7.75 111	$J_{pp} = 60.78$	17.5 (404)
VI.	PN	1245 s	CH ₃ c	2.48 s	трр загла	
		1265 s	OCH,CF,	4.32 m		
			C ₆ H ₄	7.60 m		
	CO	1755 s	0 4			
VII.	PN	1255 s				
	CO	1720 s	_			
VIII.			OCH₃ ^d	3.36 s		
			OCH ₂ CH ₂ O	3.58 q		
			OCH ₂ CF ₃	4.32 m		
				4.45 m	v. nomi	0.471
IX.	PN	1260 s	OCH ₂ CF ₃	4.31 m	N ₂ POPN ₂	8.4 (d o t)
					$P(OCH_2CF_3)_2$	16.4 (d o d)
X.	PN	1250 s	OCH CE	4.31 m	$J_{PP} = 63.76$ P(OCH ₂ CF ₃)(OCO—)	13.1 (d o t)
Α.	PN	1230 8	OCH ₂ CF ₃	4.51 111	$P(OCH_2CF_3)(OCO=)$	17.3 (d o d)
	CO	1690 s	C_6H_4	8.22 m	. 2 3/2	, ,
XI.c	_		OCH ₂ CF ₃	4.16 m	N ₂ PO	3.6 t
				4.30 m	$P(CH_2CF_3)_2$	14.4 d
			C_6H_5	7.62 m	$J_{\rm pp} = 50$	
					$P(O)_2(C_6H_5)_3$	32.3 s

^a In CCl₄ between sodium chloride plates. ^b In CDCl₃.

EXPERIMENTAL

All reagents were purchased from Sigma or Aldrich chemical companies and used as received unless otherwise noted. Acetone was dried over anhydrous sodium sulfate before use. Infra-red spectra were obtained on a Perkin-Elmer 727B spectrophotometer. Some ¹H NMR spectra were recorded on a Varian T-60 while other NMR spectra were recorded on a Bruker WP 200 spectrometer³ operating at 200 MHz (¹H) and 81 MHz (³¹P). Tetramethylsilane was used as an internal reference for the ¹H measurements and 85% phosphoric acide was used as an external reference for ³¹P measurements. Elemental analyses were performed by Huffman Laboratories, Inc., Wheat Ridge, CO. Starting materials, N₃P₃(OCH₂CF₃)₆ and (I), were prepared by previously reported procedures.^{2,4}

Typical Reaction of (I) with active chlorides. A 50 mL acetone solution of p-toluenesulfonylchloride (1.45 g, 0.0076 mol) was added dropwise to a 50 mL acetone solution of I (5.00 g, 0.0075 mol). The mixture was stirred for 1 h at 25°C and then refluxed for 4 h. Sodium chloride was filtered from the

[°]In CCl₄.
d In CD₃COCD₃.

^c Bruker WP 200.

Varian T-60 unless otherwise specified.

cooled reaction mixture and the solvent was evaporated under reduced pressure. The residue was dissolved in 20 mL of ethanol, filtered and the filtrate chilled to 0°C before addition of 40 mL of chilled water to cause precipitation. The precipitate was filtered and dried to give 4.79 g (76% yield) of a white crystalline product, N₃P₃(OCH₂CF₃)₅OSO₂C₆H₅CH₃-p, II.

Typical Reaction of II with metal salts. A 40 mL anhydrous diethyl ether solution of II (0.15 g, 0.00061 mol) was added dropwise to a 50 mL diethyl ether solution of sodium trifluoroethoxide (0.0027 mol). When the addition was complete, the solution was refluxed for 3 h. The cooled solution was filtered into a clean 100 mL beaker and then transferred to a separatory funnel containing 50 mL of cold water. The mixture was thoroughly shaken and 5 mL of saturated sodium chloride solution was added to break the emulsion that formed. The ether layer was collected in a 250 mL Erlenmeyer flask. Anhydrous sodium sulfate (about 5 g) was added and the solution was allowed to stand for 15 min before filtering into a round bottom flask. Ether was evaporated under reduced pressure and the residue was recrystallized from n-pentane to give 0.11 g (80% yield) of a white crystalline material, N₃P₃(OCH₂CF₃)₆.

Other reactions were conducted in acetone solutions.

ACKNOWLEDGMENT

We wish to thank D. W. Imhoff and L. S. Simeral of Ethyl Corp., Baton Rouge, LA for assistance in interpretation of ³¹P NMR spectra and A. A. Gallo of U.S.L. for helpful discussions throughout the project.

REFERENCES AND NOTES

- 1. H. R. Allcock and E. J. Walsh, J. Am. Chem. Soc., 91, 3102 (1969).
- 2. H. R. Allcock and E. J. Walsh, J. Am. Chem. Soc., 94, 119 (1972).
- 3. Louisiana State University Chemistry Department NMR Laboratory, Baton Rouge, LA 70803.
- 4. R. Ratz, H. Schroeder, H. Ulrich, E. Kober and C. Grundmann, J. Am. Chem. Soc., 84, 551 (1962).